

RICOSTRUIRE L'INVISIBILE... FANTASMI PERMETTENDO

PAOLO DULIO

Dipartimento di Matematica Politecnico di Milano

CHARACTERS

J. Radon

A. MacLeod Cormack

G. Newbold Hounsfield

A. Einstein

Lena

Problem: How can we know the hidden contents?

Contents known...but body destroyed

Different solution: slice the body

Different approach: slice the body

What about for the human body?

The Beer Law-1852

EXAMPLE OF SINOGRAM - RANGE [0:180]

EXAMPLE OF SINOGRAM - RANGE [0:180]

 ϑ = ANGLES OF PROJECTION

RADON TRANSFORM

RADON TRANSFORM

MAIN PROBLEM: INVERSION OF THE RADON TRANSFORM

RADON TRANSFORM

J. Radon, "Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten", Berichte über die Verhandlungen der Königlich-Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse, Leipzig: Teubner (69): 262–277,1917

INGREDIENTS

Radon Transform Fourier Transform Riesz operator Back-projection Filtering

INGREDIENTS

Radon Transform Fourier Transform Riesz operator Back-projection Filtering

 $f = \frac{1}{4\pi} B I^{-1} R f$

INGREDIENTS

Radon Transform Fourier Transform Riesz operator Back-projection Filtering

FILTERED BACK PROJECTION

CAT-THEORY

Johann Radon (1887-1956)

1979 Nobel Prize in medicine: Computed Axial Tomography

(Work published in 1963 to 1973)

Allan MacLeod Cormack Godfrey Newbold Hounsfield physicist engineer (1924 - 1998) (1919-2004)

Radon model in real applications

Radon model in real applications Only a finite number of projections can be collected.

Radon model in real applications Only a finite number of projections can be collected. Polar-cartesian interpolation is required.

Radon model in real applications Only a finite number of projections can be collected. Polar-cartesian interpolation is required.

Noise X-Ray deviation

Poor quality of reconstructions

DIGITALIZATION

VOXELIZATION

VOXELIZATION

PIXELIZATION

Linear System of Equations

Number of detectors

m=

 256x256
 65536

 512x512
 262144

Image to be reconstructed

Image to be reconstructed

Let scan X along k=2 directions, say horizontal (top-bottom) and vertical (right-left)

W

m=5 equations

n=6 unknown

r=rank(W)=4

Ξ

X₆

+

G

any solution of WX=0

=

$$(= \begin{array}{c} 4 & 3 & 2 \\ 2 & 3 & 1 \end{array}$$

a solution image X*

Numerical problem: compute a good approximation of a particular solution X* Geometric Problem: investigate the space of ghosts

Ghosts corrupt the image reconstruction

A 256x256 ghost with respect to horizontal and vertical directions

Adding ghosts provides a change in the image density

ORIGINAL

Working with ghosts

Due to ghosts, incorporation of prior knowledge is required in the tomographic reconstruction problem.

Working with ghosts

Due to ghosts, incorporation of prior knowledge is required in the tomographic reconstruction problem.

Tomography	Approach	Information	Space of Ghosts
Geometric Parallel X-rays	Transformations, Invariants, Geometric properties	Geometric aspects	Geometric descriptionU-polygonsBad-configurations
Geometric Source X-rays	Measure theory	Analytic properties	Integral description Non-trivial zero measurable
Discrete Parallel X-rays	Polynomial factorization	Bounding gridValid directions	Algebraic description Switching components
Discrete Source X-rays	Projective geometry Number theory	Geometric aspects	Geometric description P-polygons
Computerized Discrete	Algorithms based on Iterative methods	Number of grey levels, kind of noise	Numerical description Solutions of WX=0

Assume to know a bounding lattice grid A. For any direction (a,b) define

$$f_{(a,b)}(x,y) = \begin{cases} x^a y^b - 1 & if \ a > 0, \qquad b > 0 \\ x^a - y^{-b} & if \ a > 0, \qquad b < 0 \\ x - 1 & if \ a = 1, \qquad b = 0 \\ y - 1 & if \ a = 0, \qquad b = 1 \end{cases}$$

Assume to know a bounding lattice grid A. For any direction (a,b) define

$$f_{(a,b)}(x,y) = \begin{cases} x^a y^b - 1 & if \ a > 0, \qquad b > 0\\ x^a - y^{-b} & if \ a > 0, \qquad b < 0\\ x - 1 & if \ a = 1, \qquad b = 0\\ y - 1 & if \ a = 0, \qquad b = 1 \end{cases}$$

For a finite set S of directions consider the following polynomial

$$F_S(x,y) = \prod_{(a,b)\in S} f_{(a,b)}(x,y)$$

Assume to know a bounding lattice grid A. For any direction (a,b) define

$$f_{(a,b)}(x,y) = \begin{cases} x^a y^b - 1 & if \ a > 0, \qquad b > 0 \\ x^a - y^{-b} & if \ a > 0, \qquad b < 0 \\ x - 1 & if \ a = 1, \qquad b = 0 \\ y - 1 & if \ a = 0, \qquad b = 1 \end{cases}$$

For a finite set S of directions consider the following polynomial

$$F_S(x,y) = \prod_{(a,b)\in S} f_{(a,b)}(x,y)$$

For a function g: $A \longrightarrow Z$ define the associated polynomial

$$G_g(x,y) = \sum_{(a,b)\in A} g(a,b) x^a y^b$$

Assume to know a bounding lattice grid A. For any direction (a,b) define

$$f_{(a,b)}(x,y) = \begin{cases} x^a y^b - 1 & if \ a > 0, \qquad b > 0 \\ x^a - y^{-b} & if \ a > 0, \qquad b < 0 \\ x - 1 & if \ a = 1, \qquad b = 0 \\ y - 1 & if \ a = 0, \qquad b = 1 \end{cases}$$

For a finite set S of directions consider the following polynomial

$$F_S(x,y) = \prod_{(a,b) \in S} f_{(a,b)}(x,y)$$

For a function g: $A \longrightarrow Z$ define the associated polynomial

 $G_g(x,y) = \sum g(a,b)x^a y^b$

 $(a,b) \in A$

The function g represents a ghost if and only if there exists H(x,y) such that $G_g(x,y) = F_S(x,y)H(x,y)$

S={(1,1), (1,2),(1,-4),(3,-1)}

S={(1,1), (1,2),(1,-4),(3,-1)}

 $F_{S}(x,y)=(xy-1)(xy^{2}-1)(x-y^{4})(x^{3}-y)=$

 $= x^{6} \cdot y^{3} - x^{5} \cdot y^{7} - x^{5} \cdot y^{2} - x^{5} \cdot y + x^{4} \cdot y^{6} + x^{4} \cdot y^{5} + x^{4} - 2 \cdot x^{3} \cdot y^{4} + x^{2} \cdot y^{8} + x^{2} \cdot y^{3} + x^{2} \cdot y^{2} - x \cdot y^{7} - x \cdot y^{6} - x \cdot y + y^{5}$

S={(1,1), (1,2),(1,-4),(3,-1)}

 $F_{S}(x,y) = (xy-1) (xy^{2}-1) (x-y^{4}) (x^{3}-y) =$ =x⁶·y³ - x⁵·y⁷ - x⁵·y² - x⁵·y + x⁴·y⁶ + x⁴·y⁵ + x⁴ - 2·x³·y⁴ + x²·y⁸ + x²·y³ + x²·y² - x·y⁷ - x·y⁶ - x·y + y⁵

S={(1,1), (1,2),(1,-4),(3,-1)}

 $F_{S}(x,y)=(xy-1)(xy^{2}-1)(x-y^{4})(x^{3}-y)=$

 $= x^{6} \cdot y^{3} - x^{5} \cdot y^{7} - x^{5} \cdot y^{2} - x^{5} \cdot y + x^{4} \cdot y^{6} + x^{4} \cdot y^{5} + x^{4} - 2 \cdot x^{3} \cdot y^{4} + x^{2} \cdot y^{8} + x^{2} \cdot y^{3} + x^{2} \cdot y^{2} - x \cdot y^{7} - x \cdot y^{6} - x \cdot y + y^{5}$

У	h							
8	0	0	1	0	0	0	0	
7	0	-1	0	0	0	-1	0	
6	0	-1	0	0	1	0	0	
5	1	0	0	0	1	0	0	
4	0	0	0	-2	0	0	0	
3	0	0	1	0	0	0	1	
2	0	0	1	0	0	-1	0	
1	0	-1	0	0	0	-1	0	
0	0	0	0	0	1	0	0	
	0	1	2	3	4	5	6	X

S={(1,1), (1,2),(1,-4),(3,-1)}

 $F_{S}(x,y) = (xy-1) (xy^{2}-1) (x-y^{4}) (x^{3}-y) =$ =x⁶·y³ - x⁵·y⁷ - x⁵·y² - x⁵·y + x⁴·y⁶ + x⁴·y⁵ + x⁴ - 2·x³·y⁴ + x²·y⁸ + x²·y³ + x²·y² - x·y⁷ - x·y⁶ - x·y + y⁵

S={(1,1), (1,2),(1,-4),(3,-1)}

 $F_{S}(x,y)=(xy-1)(xy^{2}-1)(x-y^{4})(x^{3}-y)=$ $= x^{6} \cdot y^{3} - x^{5} \cdot y^{7} - x^{5} \cdot y^{2} - x^{5} \cdot y + x^{4} \cdot y^{6} + x^{4} \cdot y^{5} + x^{4} - 2 \cdot x^{3} \cdot y^{4} + x^{2} \cdot y^{8} + x^{2} \cdot y^{3} + x^{2} \cdot y^{2} - x \cdot y^{7} - x^{5} \cdot y^{7} + x^{4} \cdot y^{6} + x^{4} \cdot y^{5} + x^{4} - x^{4} \cdot y^{6} + x^{4} \cdot y^{6}$ $x \cdot y^6 - x \cdot y + y^5$ y Ύу Х

S={(1,1), (1,2),(1,-4),(3,-1)}

 $F_{S}(x,y)=(xy-1)(xy^{2}-1)(x-y^{4})(x^{3}-y)=$

 $= x^{6} \cdot y^{3} - x^{5} \cdot y^{7} - x^{5} \cdot y^{2} - x^{5} \cdot y + x^{4} \cdot y^{6} + x^{4} \cdot y^{5} + x^{4} - 2 \cdot x^{3} \cdot y^{4} + x^{2} \cdot y^{8} + x^{2} \cdot y^{3} + x^{2} \cdot y^{2} - x \cdot y^{7} - x \cdot y^{6} - x \cdot y + y^{5}$

S={(1,1), (1,2),(1,-4),(3,-1)}

$$\begin{split} \mathsf{F}_{\mathsf{S}}(x,y) &= (xy-1) (xy^2-1) (x-y^4) (x^3-y) = \\ &= x^6 \cdot y^3 - x^5 \cdot y^7 - x^5 \cdot y^2 - x^5 \cdot y + x^4 \cdot y^6 + x^4 \cdot y^5 + x^4 - 2 \cdot x^3 \cdot y^4 + x^2 \cdot y^8 + x^2 \cdot y^3 + x^2 \cdot y^2 - x \cdot y^7 - x \cdot y^6 - x \cdot y + y^5 \end{split}$$

Example of two sets with the same projections along the four given directions

0	0		0	0	0	0		
0	0	0	0	0	0	0		
0	0	0	0		0	0		
	0	0	0		0	0		
0	0	0	0	0	0	0		
0	0		0	0	0			
0	0		0	0	0	0		
0	0	0	0	0	0	0		
3	0	0	0		0	0		

0	0	0	0	0	0	0
0		0	0	0		0
0		0	0	0	0	0
0	0	0	0	0	0	0
0	0	0		0	0	0
0	0	0	0	0	0	0
0	0	0	0	0		0
0		0	0	0		0
67	0	0	0	0	0	0
\square						

Any binary set inside a given lattice grid can be uniquely reconstructed from a set $S=\{u_1, u_2, u_3, u_4=u_1+u_2\pm u_3\}$ of four suitably (precisely characterized) lattice directions.

(S. Brunetti - P. D. - C. Peri, 2013)

Let A be a given lattice grid, and let S be a set of uniqueness for A consisting of four directions. Then any binary lattice set in A can be exactly reconstructed from the real valued solution X* having minimal Euclidean norm.

(P. D. - S.M. Pagani, 2018)

BRA

- Take S={ u_1 , u_2 , u_3 , $u_4=u_1+u_2\pm u_3$ } matching (B.D.P., **2013**)
- Compute W and p according to the directions in S

- Compute X* of minimal norm such that WX*=p (SVD, CGLS or different algorithms)
- Theorem: The binary rounding of X* solve the linear system WX=p
- Since S is a set of binary uniqueness, round(X*) is the desired unique reconstruction

X-ray width $\leq \omega_{\rm S}$

I=ORIGINAL

FBP

X* - I

X-ray width $=2\omega_S$

Iterations=154

Reconstructed=99.76%

Wrong pixels=157

ROUND(X*)

X*

ROUND(X*)-I

Uniqueness of Reconstructions

X-ray width $=3\omega_{\rm S}$

Iterations=300

Reconstructed=98.96%

Wrong pixels=683

I=ORIGINAL

ROUND(X*)

X*

ROUND(X*)-I

Uniqueness of Reconstructions

X-ray width = $4\omega_{\rm S}$

Iterations=300

Reconstructed=98%

Wrong pixels=1305

ROUND(X*)-I

SOME REFERENCE BOOKS

- F. Natterer, *The Mathematics of Computerized Tomography,* Teubner, Stuttgart, 1986.
- A.C. Kak and M. Slaney, *Principles of Computerized Tomographic Imaging*, IEEE Press, 1988
- Free available online http://www.slaney.org/pct/pct-toc.html
- G. T. Herman and A. Kuba, *Discrete Tomography: Foundations, Algorithms, and Applications, Birkhäuser, Boston, 1999.*
- G. T. Herman and A. Kuba, *Advances in Discrete Tomography and its Applications*, Birkhäuser, Boston, 2007.
- R. J. Gardner, *Geometric Tomography*, 2nd ed. Cambridge University Press, New York, 2006